4-8 nov. 2024 Nouan le Fuzelier (France)

Contributions > Radjai Farhang

Compaction vs. liquefaction of a granular bed under a pressure standing wave forcing
Patrick Mutabaruka  1  , Farhang Radjai  2  , Jean-Yves Delenne  3  , Alfredo Taboada  4  , Frédéric Bouchette  5  
1 : Institut Français de Recherche pour l'Exploitation de la Mer  (IFREMER)
Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Institut Français de Recherche pour l'Exploitation de la MER - IFREMER
2 : Laboratoire de Mécanique et Génie Civil  (LMGC)
Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, 34090 Montpellier, France
CC 048 Place Eugène Bataillon, 34095 MONTPELLIER CEDEX 5 -  France
3 : Ingénierie des Agro-polymères et Technologies Émergentes  (UMR IATE)
INRAE
Campus de la Gaillarde 2, place Pierre Viala 34 060 Montpellier Cédex 02 - FRANCE -  France
4 : GEOSCIENCES-Montpellier, CNRS, University of Montpellier
Université Montpellier II - Sciences et techniques
5 : GEOSCIENCES-Montpellier, CNRS, University of Montpellier, Montpellier
Université Montpellier II - Sciences et techniques

Three dimensional coupled DEM-LBM approach is utilized to investigate the internal signature of `compaction' state versus `liquefaction-like' state of a granular bed composed of spherical particles fully immersed in a fluid while being subjected to a pressure standing wave. A wide parametric space covering large range of packing fraction, pressure wave properties (frequency and magnitude) and relative density were explored and a very promising but `non-trivial' insight results were obtained. Two granular beds were used: a frozen bed to focusing on the pressure wave changes in the bed and, a free bed to investigate, at short and long term, the microstructure of the granular bed changes that should enable to identify whether we are in a `compaction' or in a `liquefaction-like' state. For the fluid point of view in the granular bed regarding the forcing signal, the
pressure wave attenuation in the granular bed shows a strong dependency on the packing fraction while the forcing frequency plays a role in the phase shift. Non effect on the attenuation in the pressure wave magnitude were observed. The microstructure changes at long term on the free bed shows that the `liquefaction-like' state is more favorable of lower-pressure wave magnitude combined in certain measure with lower particles relative density: this corresponds at the sample level to a lower bed effective stress. The `compaction' state is found to be more favorable of higher-pressure wave magnitude combined in certain measure with higher-particles relative density; contrary to the `liquefaction-like' state, the `compaction' stat correspond to a higher bed
effective stress. The analysis of the granular bed contact network revealed that the descriptor of the `liquefaction' versus `compaction' state lies in the variation in its anisotropy while an unclear observed variation in packing fraction, coordination number or effective bed stress should not be used as descriptor key.



  • Poster
Personnes connectées : 3 Vie privée
Chargement...